2 research outputs found

    Digital Oculomotor Biomarkers in Dementia

    Get PDF
    Dementia is an umbrella term that covers a number of neurodegenerative syndromes featuring gradual disturbance of various cognitive functions that are severe enough to interfere with tasks of daily life. The diagnosis of dementia occurs frequently when pathological changes have been developing for years, symptoms of cognitive impairment are evident and the quality of life of the patients has already been deteriorated significantly. Although brain imaging and fluid biomarkers allow the monitoring of disease progression in vivo, they are expensive, invasive and not necessarily diagnostic in isolation. Recent studies suggest that eye-tracking technology is an innovative tool that holds promise for accelerating early detection of the disease, as well as, supporting the development of strategies that minimise impairment during every day activities. However, the optimal methods for quantitative evaluation of oculomotor behaviour during complex and naturalistic tasks in dementia have yet to be determined. This thesis investigates the development of computational tools and techniques to analyse eye movements of dementia patients and healthy controls under naturalistic and less constrained scenarios to identify novel digital oculomotor biomarkers. Three key contributions are made. First, the evaluation of the role of environment during navigation in patients with typical Alzheimer disease and Posterior Cortical Atrophy compared to a control group using a combination of eye movement and egocentric video analysis. Secondly, the development of a novel method of extracting salient features directly from the raw eye-tracking data of a mixed sample of dementia patients during a novel instruction-less cognitive test to detect oculomotor biomarkers of dementia-related cognitive dysfunction. Third, the application of unsupervised anomaly detection techniques for visualisation of oculomotor anomalies during various cognitive tasks. The work presented in this thesis furthers our understanding of dementia-related oculomotor dysfunction and gives future research direction for the development of computerised cognitive tests and ecological interventions

    Augmenting dementia cognitive assessment with instruction-less eye-tracking tests

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Eye-tracking technology is an innovative tool that holds promise for enhancing dementia screening. In this work, we introduce a novel way of extracting salient features directly from the raw eye-tracking data of a mixed sample of dementia patients during a novel instruction-less cognitive test. Our approach is based on self-supervised representation learning where, by training initially a deep neural network to solve a pretext task using well-defined available labels (e.g. recognising distinct cognitive activities in healthy individuals), the network encodes high-level semantic information which is useful for solving other problems of interest (e.g. dementia classification). Inspired by previous work in explainable AI, we use the Layer-wise Relevance Propagation (LRP) technique to describe our network's decisions in differentiating between the distinct cognitive activities. The extent to which eye-tracking features of dementia patients deviate from healthy behaviour is then explored, followed by a comparison between self-supervised and handcrafted representations on discriminating between participants with and without dementia. Our findings not only reveal novel self-supervised learning features that are more sensitive than handcrafted features in detecting performance differences between participants with and without dementia across a variety of tasks, but also validate that instruction-less eye-tracking tests can detect oculomotor biomarkers of dementia-related cognitive dysfunction. This work highlights the contribution of self-supervised representation learning techniques in biomedical applications where the small number of patients, the non-homogenous presentations of the disease and the complexity of the setting can be a challenge using state-of-the-art feature extraction methods.Peer reviewe
    corecore